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A concise route to ethyl 7-bromo-1-cyclopropyl-6,8-difluoro-4-quinolone-3-carboxylate has been devel-
oped. This compound is a key intermediate for divergent synthesis of various C7-substituted fluoroquin-
olones, a group of potent topoisomerase II inhibitors with promising clinical applications.
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DNA topoisomerase II belongs to a class of enzymes that control
the topological conformation of DNA, affecting virtually every as-
pect of nucleic acid physiology. It is crucial to DNA replication
and is also involved in transcription, DNA repair, and recombina-
tion.1 All type II topoisomerases are structurally and phylogeneti-
cally related. Eukaryotic topoisomerase II is the primary cellular
target of a variety of clinically established antitumor agents, while
prokaryotic topoisomerase II (DNA gyrase) is the target of antibiot-
ics in treating infections of a wide range of microbial pathogens.2

Fluoroquinolone antibiotics are known topoisomerase inhibi-
tors,3 and hinder bacterial DNA replication through targeting
DNA gyrase. As topoisomerase II inhibitors, they also show poten-
tial as anticancer agents via stimulating double strand cleavage of
DNA. Recently, there has been growing interest of developing quin-
olone-based ligands for the CB2 cannabinoid receptors. These li-
gands can be potentially useful in treating alleviating pain,
inflammation, cough, dermatitis, and cancers of different origins.4

The broad spectrum of fluoroquinolones’ activity as topoiso-
merase II inhibitors in treating bacterial infections, cancers, and
other diseases has motivated considerable efforts from the scien-
tific community. Various fluoroquinolone derivatives have been
synthesized for structure-activity relationship studies.3c,e,4a,b,5

Most fluoroqinolones with anticancer activity possess aryl moiety
at the C-7 position. Extensive studies focusing on the effect of
the substituent group at C7 on activity have been carried out.

Ethyl 7-bromo-1-cyclopropyl-6,8-difluoro-4-quinolone-3-car-
boxylate (1) is the key intermediate for the divergent synthesis
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of various C7-substituted fluoroquinolone derivatives via conve-
nient Suzuki coupling with different boronic acid compounds
(Scheme 1). This compound has previously been synthesized in
eight steps from 2,3,4,5-tetrafluorobenzoic acid via the intermedi-
ate ethyl 1-cyclopropyl-6,7,8-trifluoro-4-quinolone-3-carboxyl-
ate.5e Herein, we report our alternative access to compound 1 in
six steps under simple reaction conditions. We also exemplify
our divergent approach to C7-substituted fluoroquinolone deriva-
tives with the synthesis of CP-115,953 1-cyclopropyl-6,8-di-
Scheme 1. Divergent synthesis of fluoroquinolones.
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Scheme 2. Reagents and conditions: (a) HNO3/H2SO4, 0–25 �C, 2 h, 91%; (b)
SnCl2�2H2O, HCl (conc.), 60 �C, 40 min, 82%; (c) (1-ethoxycyclopropoxy)trimethyl-
silane, AcOH, MeOH, 67–69 �C, 3 h; (d) (i) NaBH4, BF3�Et2O, THF, 5 �C, 1 h; (ii) 5, THF,
5–10 �C, 25 �C for 5 h, reflux for 2 h, 68% from 4 to 6; (e) diethyl ethoxymethyl-
enemalonate, Py, 150 �C, 7.5 h, 77%; (f) polyphosphoric acid, hexane, 120 �C, 3.5 h,
37%; (g) (i) 4-hydroxyphenylboronic acid, Pd(PPh3)4, K2CO3, THF, 110 �C (sealed),
8 h, 64%; (ii) HCl (10% aq), THF, 70 �C, 1 h, 89%.
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fluoro-7-(4-hydroxyphenyl)-4-quinolone-3-carboxylic acid (2),
one of the most investigated quinolones.

The synthesis began with the commercially available compound
2-bromo-1,3-difluorobenzene (3) (Scheme 2). Nitration of 3 with
nitric acid/sulfuric acid provided the corresponding nitro com-
pound 2-bromo-1,3-difluoro-4-nitrobenzene in 91% yield. Subse-
quent reduction with tin (II) chloride in concentrated HCl at
60 �C produced the 3-bromo-2,4-difluoroaniline 4 in 81% yield.
Installation of the cyclopropyl group onto the aniline nitrogen
was accomplished with a two-step sequence. First, the aniline 4 re-
acted with (1-ethoxycyclopropoxy)trimethylsilane in acetic acid/
methanol at 67 �C. The obtained intermediate 5 was treated with
sodium borohydride (NaBH4) in the presence of trifluoroborane
etherate (BF3�OEt2) to provide the desired 3-bromo-N-cyclopro-
pyl-2,4-difluoroaniline (6) in 68% yield over two steps.6 Reaction
of 6 and diethyl ethoxymethylenemalonate at 150 �C led to 7 in
77% yield. Cyclization of 7 to 1 proved to be challenging. Neither
heating 7 in diphenyl ether in the range 250–280 �C3c nor reactions
of 7 in oleum or chlorosulfonic acid could generate 1.7 Eventually,
this key intermediate 1 was obtained in 37% yield from the reac-
tion carried out in polyphosphoric acid at 120 �C. From compound
1, CP-115,953 was conveniently obtained in 57% yield from Suzuki
reaction with 4-hydroxyphenylboronic acid followed by hydrolysis
of the C3 ethyl ester moiety in dilute hydrochloric acid.8

(Scheme 2)
In summary, the intermediate 1, crucial for divergent synthesis

of various C7-substituted fluoroquinolone compounds for
extensive SAR studies, has been synthesized in six steps with a
14% overall yield. Although the overall yield is lower than that of
the eight-step sequence in the literature (i.e., 31%),5e this synthesis
provides a convenient and simple alternative access to the target
compound.
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